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Study of a Ground-Motion Simulation Method using
a Causality Relationship

KENICHI NAGAO1 and JUN KANDA2

1Daiwa House Industry, Umeda, Kita-ku, Osaka, Japan
2Department of Architecture, Nihon University, Kanda, Chiyoda-ku, Tokyo,
Japan

The causality of natural ground motions is evaluated through statistical values for the phase
difference. The causality is expressed in terms of the Hilbert transform relationship between the real
and imaginary parts of the Fourier transform of the ground motion. We find that ground motions with
a shorter duration have a higher degree of causality. Furthermore, we propose a ground-motion sim-
ulation algorithm that incorporates causality. The simulated ground motions, compatible with design
response spectra, have almost the same spectrum conversion factors as those estimated from natural
ground motions.

Keywords Phase Difference; Causality; Response Spectrum; Hilbert Transform; Design Ground
Motion

1. Introduction

In designing large and socially important structures such as nuclear power plants or high-
rise buildings, dynamic analysis is done by using artificial ground motions compatible
with a code-specified design response spectrum. Usually, this spectrum is a 5%-damping
acceleration response spectrum. One way to develop such ground motions is to follow
these steps: (a) to set the initial Fourier amplitudes and phase angles; (b) take the inverse
Fourier transform and obtain the ground motion; (c) check whether the ground motion’s
response spectrum is nearly equal to the design response spectrum; and (d) if not, increase
or decrease the Fourier amplitudes and go back to step (a). This iteration continues until
the requirement in step (c) is satisfied at a certain level, e.g., within 1%.

In the procedure above, the Fourier amplitudes Fk and phase angles φk are defined inde-
pendently. On the other hand, previous research has pointed out that there is a relationship
between the two components. Thrainsson et al. [2000] and Thrainsson and Kiremedjian
[2002] provided a scatter plot between the Fourier amplitudes and phase differences �φk

similar to Fig. 1a. They observed that the relationship was no longer “independent” and
explained the relationship based on the method of envelopes [Nigam, 1984]. Boore [2003]
obtained similar scatter plots in the relation between the Fourier amplitude and envelope
delay. Montaldo et al. [2003] compared relationships between the Fourier amplitudes and
phase differences of two ground motions of the same earthquake event: one for ground
motion recorded at a short distance (similar to Fig. 1a) and the other for ground motion at
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892 K. Nagao and J. Kanda

(a) (b)

FIGURE 1 Phase differences as a function of the Fourier amplitude for records at a) the
Hino site (epicentral distance = 7 km) and b) the Taishi site (epicentral distance = 227 km)
from the Tottoriken seibu earthquake (data for 0.1–10.0 Hz are used).

a greater distance (similar to Fig. 1b). They stated that more data points were concentrated
at very small amplitudes for the latter case. The two components are expressed as follows:

Fk =
√

A2
k + B2

k (1)

�φk = φk+1 − φk (2.a)

φk = tan−1 −Bk

Ak
(2.b)

where Ak and Bk are the real and imaginary parts, respectively, of the Fourier complex
numbers. Therefore, the relationship between the Fk and �φk is essentially represented
by a relationship between Ak and Bk. In fact, Papoulis [1977] and Nigam [1982] pointed
out that if a ground motion is a causal function, Ak and Bk form Hilbert transform pairs.
By using the relationship between Ak and Bk, Sato and Murono [2004] discussed the method
to estimate the Fourier amplitudes from the phase angles. However, no one has yet exam-
ined quantitatively the relationship between Ak and Bk for natural ground motions. In the
present study, the relationship between the real and imaginary parts is evaluated for natural
ground motions and an algorithm to simulate artificial ground motion with the same rela-
tionship is proposed. This algorithm requires information about the target design spectrum
and the mean and standard deviation of the phase differences in certain frequency bands.
Furthermore, the advantages of the algorithm are demonstrated by comparing energy char-
acteristics of simulated ground motions satisfying the relationship with those not satisfying
it. In the next section, the definitions of causality and phase difference are presented.

2. Definitions

2.1. Definition of Causality

In Papoulis [1977], causality is defined as a function of time, x(t), equal to zero for t < 0.
Therefore, if a function can be expressed as
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Ground-Motion Simulation Method 893

–T/2 0 T/2

0 T/2 T

Definition of time in Papoulis (1977)

Definition of time in analyzing ground motion

FIGURE 2 Definitions of time history and time shift.

x (t) = 0 for t < 0 (3)

it is a causal function. When taking the Fourier transform for a time history, the real part Ak

(k = −N/2+1,−N/2+2, . . . ,0,1, . . . ,N/2, where N = sample size) and imaginary part
Bk (k = −N/2+1,−N/2+2, . . . ,0,1, . . . ,N/2) are obtained. For causal functions, the Ak

relate to the Bk as follows:

Ak = 2

π

∑∞
l=−∞

Bk−2l−1

2l + 1
(4.a)

Bk = − 2

π

∑∞
l=−∞

Ak−2l−1

2l + 1
(4.b)

Note that the relationship in Eq. (4) is the Hilbert transform for discrete functions.
The discussion above is based on the assumption that the time history is defined for

the time domain interval –T/2 < t < T/2, where T = N∗�t (�t = time step). On the
other hand, when analyzing ground motions, it is usually assumed that the ground motions
are defined for 0 < t < T . Because of this time shift, a ground motion with causality is
considered to have zero amplitude after T/2; see Fig. 2.

Katukura et al. [1989] proposed a symmetrical FFT technique that uses the causality
of pulse-like ground motions in the time and frequency domains. In their conclusion, they
stated “most of the time functions treated in earthquake engineering are real causal”; hence,
the symmetrical FFT technique has wide applicability in the field. However, from the dis-
cussion above, it is obvious that ground motions are rarely seen as perfect causal functions.
Natural ground motions having a longer duration of strong motion may not be causal func-
tions. Alternatively, even if a ground motion has short strong-motion duration, it may not
be a causal function if the large amplitudes appear close to, or after, T/2. Therefore, the
location of the peak amplitude and duration of the strong motion are important factors for
determining the degree of causality in ground motions. The mean and standard deviation
of the phase difference, defined in the next section, are useful for quantitative evaluation of
the two components.

2.2. Definition of Phase Difference

Ohsaki [1979] defined the phase difference as follows:

�φk = φk+1 − φk (k = 1, 2, . . . , N/2 − 2) (5.a)
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894 K. Nagao and J. Kanda

φk = tan−1 −Bk

Ak
. (5.b)

It should be noted that φ is defined for [-π , π ] while the �φ range is [-2π , 0].
The same author pointed out that the histogram of the phase difference has a shape

similar to that of the envelope of the ground motion (see Fig. 3, for instance).
Papoulis [1977], Nigam [1982], and Iwasaki et al. [1988] explained the reason by

giving a physical meaning for the phase difference. Expressing the ground motion’s time
history x(t) as a summation of each signal frequency element gives

x (t) =
∑ N

2 −1

k=1
Fk cos(2π fkt + φk)

= F1cos (2π f1t+φ1) + · · ·+Fjcos
(
2π fjt+φj

) + · · · .

(6)

In Eq. (6), it is assumed that F0 and FN/2 are both zero and they are hence removed
from the typical expression of the Fourier transform. Setting all Fourier amplitudes to the
same value, F, yields

x (t) ≈ · · · + Fcos
1

2
(2π�ft + �φj−1)cos

1

2

[(
2π fj−1 + 2π fj

)
t + φj−1 + φj

]

+ Fcos
1

2

(
2π�ft + �φj

)
cos

[(
2π fj + 2π fj+1

)
t + φj + φj+1

] + · · · .

(7)

In Eq. (7), each term represents a beat whose envelope and signal frequency are
Fjcos 1

2

(
2π�ft + �φj

)
and 2π fj+2π fj+1

2 , respectively; see Fig. 4. The time tp at which the
beat takes its peak amplitude is calculated as

tp = − �φj

2π�f
= −�φj

2π

∗N�t. (8)

As can be seen from Eq. (8), the phase difference provides the location of the peak
envelope of the beat. Hence, the histogram of the phase difference resembles the envelope
of the ground motion.

The mean value μ and standard deviation σ can be regarded as the location of the peak
amplitude and duration time of strong motion, respectively:

Δφ (rad) –2π0

µ = –1.08 rad
σ = 0.374 rad

A
C

C
 (

ga
l)

Time (sec)

duration

Normalized frequency

Total number of data = 1624
for 0.1 – 10.0 Hz
(given N = 32768 and 200Hz
sampling frequency)

FIGURE 3 Example of ground motion and phase difference distribution.
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Ground-Motion Simulation Method 895

FIGURE 4 Peak location, envelope function, and frequency of the beat.

μ = 1

N

∑N

i=1
�φi (9.a)

σ =
√

1

N

∑N

i=1
(�φi−μ)2 . (9.b)

In computing σ , 2π was added to all phase difference values smaller than μ - π , so
that all data fall within a range of μ ± π . Nagao and Kanda [2011] showed that the Fourier
amplitudes are negligibly small at frequencies where the phase differences are outside μ ±
4σ . Such small values (outliers) sometimes affect σ . Hence, the outliers were eliminated
when computing μ and σ (in Nagao and Kanda [2011], approximately 1.6% of all data
were judged to be outliers).

The degree to which a ground motion can be seen as a causal function will be influ-
enced by μ and σ . The causality of the natural ground motions is evaluated quantitatively
through the following steps.

1. Set all ground motions so that their P-wave motion appears from 15.0 s on the time
domain and that the total record length is N∗�t = 32768∗0.005 s = 163.84 s.

2. For each ground motion, compute μ and σ of phase difference in the following sig-
nal frequency bands: 0.1–1.0 Hz, 1.0–2.0 Hz, 2.0–3.0 Hz, 3.0–4.0 Hz, 4.0–5.0 Hz,
5.0–6.0 Hz, 6.0–7.0 Hz, 7.0–8.0 Hz, 8.0–9.0 Hz, and 9.0–10.0 Hz.

3. Take the Fourier transform and compute Ak (k = 0,1,2, . . . ,N/2) and Bk (k = 0,1,2,
. . . ,N/2) for each ground motion. Then take the Hilbert transform of Ak to obtain
Bk

∗(k = 0,1,2, . . . ,N/2). Note that the time shift has already been considered in the
definitions of Ak, Bk, and Bk

∗.
4. Compute the correlation coefficient between the actual imaginary part, B, and the

computed imaginary part, B∗, in each of the frequency bands as follows:

ρ = corr (B,B∗) . (10)
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896 K. Nagao and J. Kanda

Note that ρ = 1.0 means that the ground motion is a perfect causal function. However,
ρ does not always become 1.0 for natural ground motion records as will be seen later. The
details of ground motion data set are explained in the next chapter.

3. Ground Motion Data Set

After the 1995 Hyogoken-nanbu earthquake in Kobe, Japan’s K-NET and KiK-net projects
were initiated, and researchers began to utilize the ground-surface and underground acceler-
ation records obtained in a number of earthquakes. Thus, only earthquake events occurring
after 1995 are considered. In this study, borehole KiK-net records obtained in fourteen
earthquake events, each with Mw is greater than or equal to 6.5, with some exceptions, are
used; See Table 1a.

The time step �t and the sample size N are 0.005 s and 32768, respectively. Thus,
ground motions whose record lasts far more than 81.92 s are preferable. If the record length
is less than 81.92 s, more than N/2 zeros are included in the FFT, causing the ground
motion to automatically be a perfect causal function. Only 32 ground motions out of more
than 300 records have record lengths less than 163.84 s, with the shortest record length

TABLE 1a Earthquakes’ data analyzed in this article

No. Name
Occurrence

date Mw Depth Mechanism
Hypocenter

location

1 Tottoriken seibu 2000/10/06 6.6 11 km Crustal, strike Long. 133.35 Lat.
35.28

2 Niigataken
chuetsu

2004/10/23 6.6 13 km Crustal, reverse Long. 138.87 Lat.
37.29

3 Fukuokaken
seihouoki

2005/03/20 6.6 9 km Crustal, strike Long. 130.18 Lat.
33.74

4 Notohanto oki 2007/03/25 6.7 11 km Crustal, reverse Long. 136.69 Lat.
37.22

5 Niigataken
chuetsu oki

2007/07/16 6.6 17 km Crustal, reverse Long. 138.61 Lat.
37.56

6 Iwate - Miyagi
nairiku

2008/06/14 6.9 8 km Crustal, reverse Long. 140.88 Lat.
39.03

7 Naganoken-
hokubu

2011/03/12 6.7 8 km Crustal, reverse Long. 138.60 Lat.
36.98

8 Tokachi oki 2003/09/26 7.9 42 km Interface, reverse Long. 144.07 Lat.
41.78

9 Miyagiken oki 2005/08/16 7.1 45 km Interface, reverse Long. 142.28 Lat.
38.15

10 Geiyo 2001/03/24 6.7 51 km Intraplate Long. 132.71 Lat.
34.12

11 Iwateken
nairikunanbu

2001/12/02 6.5 122 km Intraplate Long. 141.26 Lat.
39.40

12 Miyagiken oki 2003/05/26 7.0 70 km Intraplate Long. 141.68 Lat.
38.81

13 Surugawan 2009/08/11 6.2 23 km Intraplate Long. 138.50 Lat.
34.78

14 Miyagiken oki 2011/04/07 7.1 66 km Intraplate Long. 141.92 Lat.
38.20

D
ow

nl
oa

de
d 

by
 [

K
en

ic
hi

 N
ag

ao
] 

at
 0

6:
35

 0
3 

Ju
ly

 2
01

4 



Ground-Motion Simulation Method 897

TABLE 1b The number of analyzed records and the minimum and maximum epicentral
distances for each earthquake

No. Name Min. distance Max. distance No. of records

1 Tottoriken seibu 7 km 100 km 33
2 Niigataken chuetsu 15 km 99 km 31
3 Fukuokaken seihouoki 36 km 99 km 22
4 Notohanto oki 35 km 92 km 7
5 Niigataken chuetsu oki 29 km 100 km 23
6 Iwate - Miyagi nairiku 3 km 100 km 38
7 Naganoken-hokubu 16 km 97 km 36
8 Tokachi oki 104 km 150 km 11
9 Miyagiken oki 91 km 148 km 16
10 Geiyo 19 km 98 km 36
11 Iwateken nairikunanbu 8 km 100 km 45
12 Miyagiken oki 13 km 98 km 21
13 Surugawan 21 km 100 km 37
14 Miyagiken oki 83 km 98 km 7

being 120 s. This is the main reason why the KiK-net records were chosen. Acceleration
records obtained within 100 km epicentral distance are considered. However, two interface
earthquakes occurred off the coast of the Pacific Ocean and the numbers of records within
100 km are very few. For that reason, records up to 150 km for the 2005 Miyagiken oki
and 200 km for the 2003 Tokachi oki earthquakes are used. All ground motion records are
obtained at underground points where the shear wave velocity, Vs, is more than 400 m/s.
The number of analyzed records and the minimum and maximum epicentral distances for
each earthquake are shown in Table 1b.

4. Causality of Natural Ground Motion

To quantitatively evaluate the degree of causality for the natural ground motion records,
the procedures in the “Definition of Phase Difference” section were followed. Before pre-
senting the ρ value of the natural ground motions, the relationships between μ and σ of
the phase differences were investigated in each frequency band. Results for 0.1–1.0 Hz and
9.0–10.0 Hz are shown in Fig. 5.

a) 0.1 – 1.0 Hz b) 9.0 – 10.0 Hz

0

0.2

0.4

0.6

0.8

1

1.2

–3 –2.5 –2 –1.5 –1 –0.5 0

σ (rad)

µ (rad)

–3 –2.5 –2 –1.5 –1 –0.5 0

µ (rad)

0

0.2

0.4

0.6

0.8

1

1.2

σ (rad)

FIGURE 5 Relationship between the μ and σ of the phase difference.
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898 K. Nagao and J. Kanda

a) 0.1 – 1.0 Hz b) 9.0 – 10.0 Hz

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5

ρ

σ (rad)

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5

ρ

σ (rad)

FIGURE 6 Relationship between σ and ρ.

Figure 5 shows that there is a high negative correlation between μ and σ . Therefore,
the μ value (the approximate location of the PGA) depends on σ (the duration of the strong
motion) in natural ground motions. As stated previously, all ground motions in this study
were set so that the P-wave motion appears from 15.0 s. By this setting, the location of
PGA can be influenced by the duration of strong motion. For example, relatively delayed
PGA is expected for ground motions having a longer duration of strong motion and those
ground motions tend to have relatively larger amplitudes after T/2, which lowers the ρ

values. Note that the ρ value can quantify the degree of causality.
Figure 6 presents the relationship between σ and ρ. Note again that a ground motion

with ρ = 1 can be seen as a perfect causal function, which is rarely observed in natural
ground motions, because minor tremors are usually recorded after t = T/2. In Fig. 6, ρ

decreases as σ increases, but the relationships are not linear. Moreover, the results in the two
frequency bands are similar in terms of both the magnitude of ρ and the rate of decrease.

The criterion to determine whether a ground motion can be considered as causal
was chosen as “ρ ≥ 0.95 in all frequency bands.” From the results in Fig. 6, this
criterion can be converted to “ground motions having σ ≤ 0.65 rad in all frequency
bands.” The ground motions satisfying this requirement are called causal ground motions
and considered hereafter. The number of records selected in each event was listed in
Table 2.

It would be interesting to find out how much of the causality is lost if the phase dif-
ferences are defined independently of the Fourier amplitudes. To investigate this, artificial
ground motions, whose Fourier amplitudes and phase differences were defined indepen-
dently, were generated by the following procedure. For each of the ground motions in
Table 2, rearrange the phase differences randomly with the Fourier amplitudes unchanged
in each frequency band. Then compute the phase angles, take the inverse FFT, and synthe-
size a ground motion. Finally, compute ρ and develop the relationships between ρ and σ .
Note that μ and σ were unchanged through the process.

The results for the artificial ground motions and those of the natural ground motions
are superimposed in Fig. 7. Note that ρ decreases as σ increases for both types. Moreover,
the relationships in the two frequency bands are similar for both types of ground motions.
However, the ρ values of the artificial ground motions are smaller than those of the natural
ground motions are in the two frequency bands at the same σ values. For instance, ρ value
at σ = 0.65 rad is about 0.80 for the artificial ground motions, whereas ρ ≈ 0.95 at the
same σ for the natural ground motions. Therefore, if the Fourier amplitudes and phase
differences are defined independently, the causality is lost unless σ is assumed to be smaller
than 0.2 rad considering the criterion.
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Ground-Motion Simulation Method 899

TABLE 2 The number of records selected as causal functions

No. Name No. of records

1 Tottoriken seibu 29
2 Niigataken chuetsu 11
3 Fukuokaken seihouoki 19
4 Notohanto oki 1
5 Niigataken chuetsu oki 2
6 Iwate - Miyagi nairiku 16
7 Naganoken-hokubu 13
8 Tokachi oki 1
9 Miyagiken oki 7
10 Geiyo 32
11 Iwateken nairikunanbu 14
12 Miyagiken oki 12
13 Surugawan 24
14 Miyagiken oki 4

a) 0.1 – 1.0 Hz b) 9.0 – 10.0 Hz

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

ρ

σ (rad)

natural 
artificial

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

ρ

σ (rad)

natural

artificial

FIGURE 7 Relationship between σ and ρ for natural and artificial ground motions.

5. Algorithm to Develop Causal Ground Motion

In the previous section, the causality of natural ground motions was evaluated. In addition,
it was shown that most of the artificial ground motions generated from independent sets
of Fourier amplitudes and phase differences might not be considered as a causal function.
Here we propose an algorithm to synthesize a causal ground motion, compatible with a
design spectrum. To use this algorithm, two kinds of pre-information are necessary. This
includes a design spectrum and statistical values (mean and standard deviation) of the phase
differences in each of the ten frequency bands. For the design spectrum, a pseudo-velocity
response spectrum estimated from Japan’s 5%-damping elastic acceleration response spec-
trum was considered. A different type of spectrum (e.g., 5% damping acceleration response
spectrum defined in other countries) can also be used. A procedure to define the statistical
values is explained in Nagao and Kanda [2013]. The values are estimated from design
presumptions such as magnitude, earthquake type, or source-to-site distance. On the other
hand, to show the advantages of the algorithm statistically, using as many sets of realistic
μ and σ values as possible will be helpful. For this reason, the sets of μ and σ from natural
ground motions in Table 2 are used for the succeeding analyses.
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900 K. Nagao and J. Kanda

The algorithm consists of the following 12 steps.

1. Define the 5% damping design acceleration response spectrum (DSa) and μ and σ

in the ten signal frequency bands.
2. Set the iteration number, I = 1.
3. Define the design pseudo-velocity response spectrum, DSv, by DSa (ωn)/ ωn, where

ωn = natural circular frequency in rad/s. Further, define the initial Fourier ampli-
tudes, FI, by multiplying DSv by DCFζ = 0%, the damping correction factor for 0%
damping:

DCF(f .b., 0) = mean(Sa (f .b, 0.0))

mean(Sa (f .b., 0.05))
, (11)

where Sa is the absolute acceleration response spectrum and f.b. stands for the
natural frequency band. Details of this DCF are found in Nagao and Kanda [2013].
The initial Fourier amplitudes are defined in the interval 0.05–30.0 Hz, though DSa

and DSv are defined for 0.1–10.0 Hz. (The DCFζ = 0% outside 0.1–10.0 Hz was esti-
mated by linear extrapolation, whereas DSv outside 0.1–10.0 Hz was approximated
directly using the equation defining DSa in Japan’s code.) It is because response of
a structure having a natural frequency, 10.0 Hz, for instance, should be influenced
not only by the signal frequency component at 10.0 Hz but also by the signal com-
ponents at surrounding frequencies. To consider this, the Fourier amplitudes were
defined in a broader frequency range than 0.1–10.0 Hz.

4. Generate normal random variables having μ and σ in each of the ten frequency
bands. The normal random variables are an initial set of phase difference (�φI,k, k
= 16,17, . . . ,1639). Note that for N = 32768 and �t =0.005 s, �φI,16 is the phase
difference at about 0.1 Hz and �φI,1639 is phase difference at about 10.0 Hz. In step
3, Fourier amplitudes are defined also in the ranges 0.05–0.1 Hz and 10.0–30.0 Hz.
The μ and σ values for 0.1–1.0 Hz and 9.0–10.0 Hz are used to generate the initial
phase differences for 0.05–0.1 Hz and 10.0–30.0 Hz, respectively. For phase dif-
ference data at other frequencies, random variables ranging from−2π to 0 rad are
used.

5. Compute the phase angles φI,k (k = 1,2, . . . ,N/2-1) from the phase differences
�φI,k using Eq. (5a).

6. ake the inverse Fourier transform and generate the ground motion XI,m (m = 1,2,
. . . ,32768).

7. Compute the 5% damping velocity response spectrum (denoted Sv,I) and spectral
ratio, a function of frequency, as follows:

RSI,k=DSv,k

Sv,I,k
(k = 16, 17, . . . , 1639) (12.a)

RSI,k = 1 (elsewhere) (12.b)

8. Multiply FI by RSI to obtain FI
’.

F′
I,k = F∗

I,kRSI,k (k = 1, 2, . . . , N/2 + 1) . (13)

9. Compute the real part AI,k (k = 1,2, . . . ,N/2+1) as follows:

AI,k = F′
I,k ∗ cos

(
φI,k

)
. (14)
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Ground-Motion Simulation Method 901

FIGURE 8 Example of simulated causal ground motions.

Then take the Hilbert transform of the real part AI,k to obtain BI,k
∗ (k = 1,2, . . .,

N/2+1).
10. Update the Fourier amplitudes by

FI+1,k =
√

A2
I,k+B ∗2

I,k. (15)

Then, compute the phase differences by using AI,k, BI,k
∗, and Eq. (2). The phase

differences are denoted �φI
’.

11. Compute the statistical values of �φI
’ in each frequency band to check whether the

�φI
’ have mean and standard deviation values which are close to those specified

in step 1. Usually, the standard deviation values of the �φI
’ are smaller than the

design values specified in step 1 at the first iteration, while the mean values are
almost equal. To correct the standard deviation values, the following adjustment is
done. For each of the �φI

’ values in a frequency band,

(�φI+1)ith f .b. = mean
[(

�φ′
I

)
ith f .b.

]

+
[(

�φ′
I

)
ith f .b. − mean

[(
�φ′

I

)
ith f .b.

]]
∗ Rith f .b.

. (16)

where

Rith f .b. = σith f .b.

standard deviation
[(

�φ′
I

)
ith f .b.

] (17)

As for the mean value,

(�φI+1)ith f .b. = (�φI+1)ith f .b. +
(
μith f .b. − mean

[
(�φI+1)ith f .b.

])
(18)

By Eq. (16), each �φI
’ value is corrected so that the variance of �φI

’ in the fre-
quency band becomes the same value as σ 2. Due to the adjustment, the intended μ

and σ values can be obtained in all frequency bands, as will be seen next.
12. Set I = I+1 and go back to step 5. The iteration continues until the difference

between unity and mean value of RSI in Eq. (11a) becomes less than a certain small
value. In this study, the value used was 2%. In many cases, this requirement can be
satisfied in less than 5-time-iterations.
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902 K. Nagao and J. Kanda

One example of the simulated causal ground motions is presented in Fig. 8. Note that
from 81.92 s (= T/2) to 163.84 s (= T), all amplitudes are negligibly small. For this ground
motion, all ρ = 1.

Next, the 5% damping velocity response spectrum, Sv,I (I = 4 in this case), is compared
with the design pseudo-velocity response spectrum, DSv, in Fig. 9. The Sv,I has been con-
verged to the DSv. Finally, μ, σ , mean, and standard deviation values of the causal ground
motion are compared in Table 3. The ground motion has statistical values close to the tar-
get statistical values. Thus, simulated ground motions according to the algorithm have the
intended μ and σ values, a specific spectral intensity, and causality. Note, however, that
the authors recommend using this algorithm only for ground motions expected to have σ

≤ 0.65 rad in all of the 10 frequency bands given N = 32768 and �t = 0.005 s, as the
criterion was defined for the causal ground motion as stated previously.

FIGURE 9 Sv and DSv of the ground motion.

TABLE 3 Target and simulated μ and σ values of the ground motion in Fig. 8

Frequency band Target µ (rad) Target σ (rad) Simulated µ (rad) Simulated σ (rad)

0.1–1.0 Hz −1.113 0.279 −1.086 0.282
1.0–2.0 Hz −1.068 0.222 −1.061 0.227
2.0–3.0 Hz −1.073 0.219 −1.069 0.222
3.0–4.0 Hz −1.094 0.198 −1.080 0.215
4.0–5.0 Hz −1.066 0.265 −1.036 0.275
5.0–6.0 Hz −1.086 0.205 −1.089 0.215
6.0–7.0 Hz −1.080 0.209 −1.070 0.219
7.0–8.0 Hz −1.048 0.168 −1.034 0.166
8.0–9.0 Hz −1.210 0.326 −1.194 0.340
9.0–10.0 Hz −1.096 0.211 −1.103 0.214
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Ground-Motion Simulation Method 903

6. Energy Spectra of Simulated Causal Ground Motions Concept of Energy
Spectrum

In this section, the energy spectrum characteristics of the simulated causal ground motions
will be discussed. The concept of the energy spectrum, also called the VE spectrum, was
first introduced by Akiyama [1987]. The equivalent velocity, VE, is represented by

VE =
√

2E

m
(19)

where E is the total energy input to a structure from a ground motion component and m is
the mass of the structure.

The response spectrum provides the peak response of all possible linear SDOF systems
to a ground motion. On the other hand, the energy spectrum gives the total energy input by
a ground motion to all possible linear SDOF systems.

A study of the spectrum conversion factor (SCF) between the velocity response spec-
trum and the energy spectrum can be found in Nagao and Kanda [2014]. The SCF is defined
as follows:

SCF (f .b., ζ )=VE(f .b., ζ )

Sv(f .b., ζ )
, (20)

where ζ is the damping ratio.
The simulated causal ground motions are evaluated for their energy characteristics

using the following quantities:

AVE = mean

(
VE

DVE

)
0.1−10.0 Hz

(21.a)

ERRE = mean

(∣∣∣∣1− VE

DVE

∣∣∣∣
)

0.1−10.0 Hz

, (21.b)

where VE is a 10% damping energy spectrum of the simulated ground motions and DVE

is the expected design energy spectrum defined by DSv
∗SCF(ζ =5%). AVE represents the

ratio of the level of VE to that of DVE (i.e., the ratio of the simulated energy spectrum to
the target energy spectrum), whereas ERRE gives the mean absolute difference between the
two spectra.

Akiyama [1985] observed that damping could smooth the energy spectrum shapes.
However, for a damping ratio of more than 10%, the smoothing effect was small. Therefore,
he studied the characteristics of 10% damping energy spectrum of natural ground motions.
Although DSv is evaluated for 5% damping, DVE, the product of DSv and SCF, can be
considered also for the 10% damping, because damping is not effective in decreasing the
mean energy spectrum level as shown by previous literatures, e.g., Akiyama [1985] and
Nagao and Kanda [2014].

7. Effect of Number of Intervals in a Frequency Band

In step 11 of the proposed algorithm, each phase difference value is modified within a
signal frequency band so that the mean and standard deviation values can approach the μ

and σ defined in step 1. This can also be attained by dividing the signal frequency band into
n equal intervals. For instance, consider the target μ and σ values in 7.0–8.0 Hz. If n = 5 is
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904 K. Nagao and J. Kanda

used, each subdivided frequency band, i.e., 7.0–7.2 Hz, 7.2–7.4 Hz, 7.4–7.6 Hz, 7.6–7.8 Hz,
and 7.8–8.0 Hz, is supposed to have achieved the target μ and σ values when the iteration
is terminated. (The selection of the n value affects the AVE value significantly, as will be
shown next.) The values n = 1, 2, 3, 4, 5, and 11 were considered. For all sets of μ and σ

of ground motions in Table 2, the AVE value and ERRE values were computed for different
n. Figure 10 shows the relationship between n and AVE and n and ERRE for each of the
185 sets. Note that the thick red line represents the mean AVE or mean ERRE for each n
value.

Figure 10 shows a tendency for the AVE value to decrease as n increases, whereas
no clear trend can be found in the n-ERRE relationships. The physical meaning of AVE

suggests that obtaining the value of AVE closest to unity is preferred. On the other hand,
the results of Fig. 10a imply that no specific number of intervals can be suggested to all
of the 185 sets of μ and σ values. For some sets of μ and σ , a small n is better, while
others require a larger n. Therefore, the authors suggest that for a given set of μ and σ , one
should try the smallest n (i.e., n = 1), and if too large AVE is observed, one should increase
n to 2, 3, . . . , and so forth, until the AVE value closest to unity is obtained. The authors’
experience indicates that ground motions having relatively small σ values, near-fault
pulse-like ground motions, for instance, tend to take a small n value, while those having
large σ values will take a large n value.

The AVE and ERRE values for the n at which AVE is closest to unity are noted for each
set of μ and σ . Histograms of the AVE and ERRE values for the causal ground motions
using the 185 sets of μ and σ are shown in Fig. 11.

It can be seen from Fig. 11 that all of the computed AVE are close to unity and that
the mean of ERRE values is 10.4%. Therefore, the algorithm makes it possible to develop

a) n – AVE b) n – ERRE

n

1 2 3 4 5 11 1 2 3 4 5 11

n

FIGURE 10 Relationship between a) n and AVE, and b) n and ERRE.
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FIGURE 11 Histogram of a) AVE, and b) ERRE for simulated causal ground motions.
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Ground-Motion Simulation Method 905

a) ground motion b) simulated and target spectra

FIGURE 12 Example ground motion and its response and energy spectra (AVE =
1.035 and ERRE = 0.115).

TABLE 4 Set of μ and σ values for ground motion in Fig. 12a

Frequency band µ (rad) σ (rad)

0.1–1.0 Hz −1.51 0.64
1.0–2.0 Hz −1.286 0.416
2.0–3.0 Hz −1.062 0.192
3.0–4.0 Hz −1.088 0.218
4.0–5.0 Hz −1.106 0.236
5.0–6.0 Hz −1.107 0.237
6.0–7.0 Hz −1.099 0.229
7.0–8.0 Hz −1.09 0.22
8.0–9.0 Hz −1.081 0.211
9.0–10.0 Hz −1.073 0.203

a causal ground motion with a design response spectrum and the expected design energy
spectrum within a reasonable accuracy.

Figure 12a presents the synthesized ground motion simulated from a set of μ and σ in
Table 4. In Fig. 12b, the 5% damping velocity response spectrum and 10% damping energy
spectrum with the DSv and DVE spectra are shown. It should be noted that the ground
motion is causal and the simulated energy spectrum is reasonably well fitted to the design
energy spectrum.

8. Comparison to Non Causal Simulated Ground Motions

The 10% damping energy spectrum characteristics of the simulated causal ground motions
discussed above are now compared to those computed for non causal artificial ground
motions. Note that minor changes are required in the algorithm to develop a non causal
ground motion compatible to the design spectrum. These include abbreviations of steps
9 and 10 and changing FI,k

’ and �φI
’ to FI+1,k, and �φI+1, respectively. Also, note that the

same n value as before was chosen for each of the 185 ground motions in this comparison.
Figure 13 presents the histograms of the computed AVE and ERRE values of the simu-

lated non causal ground motions. Figure 13a clearly shows that the non causal AVE values
tend to be smaller than unity by about 15%. In addition, the non causal AVE values have a
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906 K. Nagao and J. Kanda

a) AVE
b) ERRE

0
10
20
30
40
50
60
70
80
90

0.76 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08

Histogram

AVE

0
10
20
30
40
50
60
70
80

0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

Histogram

ERRE

Mean:  0.859
Standard deviation: 0.0459

Mean:  0.163
Standard deviation: 0.0398

FIGURE 13 Histogram of a) AVE and b) ERRE for simulated non-causal ground motions.

larger dispersion (standard deviation = 0.0459) than the causal AVE values have (standard
deviation = 0.0289). From this observation, it can be expected that most of the artificial
ground motions compatible with the design response spectrum but not satisfying causality
will give less energy to structures than expected. The difference between the energy spectra
of the causal artificial ground motions and those of the non causal artificial ground motions
comes from the inherent simulation procedures in the algorithm presented in this study.
In step 11 of the first iteration, the standard deviation value of the �φ′

I in each frequency
band generally becomes smaller than the target design standard deviation value, σ . Those
differences are corrected by Eqs. (16) through (18) to obtain the �φ2. The new artificial
ground motion, X2, is simulated using the previously updated Fourier amplitudes, F2, and
the updated phase angles, φ2, computed from the �φ2. The 5% damping velocity response
spectrum, Sv,2, still tends to be smaller than the design response spectrum, DSv. Note here
that if the X2 is generated from the F2 and �φ′

I , whose standard deviation values are smaller
than those of �φ2, the 5% damping response spectrum will be very close to the DSv. Due
to the adjustment by Eqs. (16) through (18), the peak amplitude of the X2 becomes lower
as a result of the elongation of the duration of strong motion, causing the smaller response
spectrum in the second iteration. Consequently, the spectral ratio in 0.1–10.0 Hz defined
by Eq. (12a) still become greater than 1.0, yielding the relatively larger Fourier amplitudes
in the causal ground motions (the Fourier amplitude spectrum is equal to the 0% damping
energy spectrum, as shown by Akiyama [1985]). The difference between the standard devi-
ation values of �φI

’ and the target standard deviation values becomes much smaller after
the second iteration.

9. Conclusions

1. The causality of the natural ground motions was investigated in terms of the cor-
relation coefficient ρ and it was found that the natural ground motions having σ ≤
0.65 rad in all ten frequency bands have ρ ≥ 0.95 in all frequency bands. However,
artificial ground motions developed from independent sets of the Fourier amplitude
and phase difference have much lower ρ value, i.e., lower causality in all frequency
bands.

2. The simulated ground motions generated from the proposed algorithm can have
causality, the same spectral intensity as the design response spectrum, and the
intended mean and standard deviation values of the phase differences in all
frequency bands.

3. The 10% damping energy spectrum of the simulated causal ground motions was
compared with the expected design energy spectrum, and the simulated energy
spectrum has the same level as the expected energy spectrum.
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